期刊歸檔用於 2020年5月

2020年05月04日

4. R script tellingen

  • Here’s the little R script I used to make that fig from the iNat API

    ere’s the little R script I used to make that fig from the iNat API
    library(jsonlite)
    options(timeout= 4000000)
    dat <- fromJSON("http://api.inaturalist.org/v1/observations/histogram?date_field=created&interval=month&verifiable=true")
    x = c()
    y = c()
    for(i in 1:(length(dat$results$month))){
    x = c(x,names(dat$results$month[i]))
    y = c(y,dat$results$month[[i]])
    }

    par(mfrow=c(1,1))
    xx = (1:length(y))
    plot(xx,y, type="l", axes=FALSE, xlab="", ylab="Observations per month", xlim=c(40,length(xx)))
    points(xx,y, type="l", lty=2)
    axis(2)
    axis(1,which(strptime(x,"%Y-%m-%d")$yday==0),(2019-length(which(strptime(x,"%Y-%m-%d")$yday==0))+1):2019)
    abline(h=1000000, lty=2)

    Here’s the little R script I used to make that fig from the iNat API

  • https://twitter.com/search?q=pypsa Ik dacht dat ergens door betere voorspellingen negatieve prizjen bijna zouden verdwijn maar ik kan he net vindne

    https://zenodo.org/record/7050651/files/Naturalis%20Biodiversity%20Center%20%282022%29.%20Eindrapportage%20project%20Automatische%20beeldherkenning%20voor%20museumcollecties.pdf?download=1

    Naturalis Biodiversity Center (2022). Eindrapportage project Automatische beeldherkenning voor museumcollecties.pdf

    https://www.nlbif.nl/verborgen-biodata/ wist je dit...geleid door gallenman

    https://twitter.com/hashtag/EnergyTwitterVrijMiBo?src=hashtag_click

    https://www.researchgate.net/publication/341278898_Big_Data_Ja_Natuurlijk

    https://www.researchgate.net/publication/349378026_Diet_composition_of_the_golden_jackal_Canis_aureus_in_south-east_Europe_-a_review

    https://www.knawonderwijsprijs.nl/bestandenafbeeldingen/2016/modelleren-van-vegetatiepatronen.pdf

    https://www.geologienederland.nl/wp-content/uploads/2022/09/NGV_THM_CRB_Themadag_Noordzeebodem_2022_-_Samenvattingen_lezingen_versie_2.pdf

    https://www.techthics.nl/wp-content/uploads/2022/02/erdincsacan-inclusieveartificialintelligence.pdf

    https://arxiv.org/pdf/1906.10742.pdf

    https://arxiv.org/pdf/2103.10703.pdf

    https://www.tmgonline.nl/article/10.18146/tmg.815/

    https://github.com/joergmlpts

    https://forum.inaturalist.org/t/computer-vision-update-july-2021/24728 1

    https://www.inaturalist.org/blog/63931-the-latest-computer-vision-model-updates 1
    https://forum.inaturalist.org/t/new-computer-vision-model-released/31030 1

    https://forum.inaturalist.org/t/new-vision-model-training-started/27378 1
    https://www.inaturalist.org/blog/59122-new-vision-model-training-started 1

    https://github.com/inaturalist/inatVisionTraining

    The file https://github.com/inaturalist/inatVisionTraining/blob/main/nets/nets.py 1 appears to have the relevant code for instantiating models. The main chunk of the model is Xception which involves something called “depthwise separable convolutions” (I have not read the paper yet). The output of Xception is then put through a global average pooling layer, then a dropout layer, then a dense layer (i.e. like you would find in a perceptron model), and then a softmax layer.

    With some further reading of the paper, I think the Github repo will have given me a much clearer picture of what the computer vision model


  • https://repository.naturalis.nl/pub/800043/Wesselingh-en-Moerdijk-2010-De-fossiele-schelpen-van-de-Nederlandse-kust.pdf
    https://www.vliz.be/docs/HAROkit-Zoekkaart-Roggen_versieApril2016.pdf
    anemoon.org/DesktopModules/Bring2mind/DMX/API/Entries/Download?command=core_download&entryid=1119&language=nl-NL&PortalId=0&TabId=165
    https://edepot.wur.nl/446037
    Op het strand kun je ook eieren zoeken. Namelijk de lege eikapsels van haaien en roggen. Download de zoekkaart: http://go.wnf.nl/glcmv2

  • This repository provides Python code that identifies plants, birds, and insects in photos.

    This project was inspired by the amazing progress in identifying plants, animals and mushrooms in photos that has been made by iNaturalist in the past years. The iNaturalist team has trained machine learning models with their vast collection of photos and research-grade identifications. In 2019, iNaturalist released Seek by iNaturalist which identifies photos offline on the phone and identifies to a higher level than species when an identification to species cannot be made.

    Google provides three models that have been trained with iNaturalist data - classification models for plants, birds, and insects. These Google models can be downloaded and used with Google's TensorFlow and TensorFlow Lite tools.

    This code is based on the trained models that Google provides. It has been written to experiment with identification of species from photos and to give Seek's approach a try and compute probabilities across the taxonomic hierarchy.

    This tool nature_id.py has been tested on Linux and Windows. It likely works on macOS as well.

    This is a command-line tool. It is called with photos or directories that contain photos and identifies the plants, birds, and insects in these pictures.
    Here is an example. This is the command for Linux and macOS:

    ./nature_id.py -m plants plant_images/Persicaria_amphibia.jpg
    On Windows the command is:

    python .\nature_id.py -m plants plant_images\Persicaria_amphibia.jpg

    https://github.com/joergmlpts/nature-id

  • It seems like someone has worked on that topic. Here is a paper from 2021 I found: https://arxiv.org/pdf/2103.08894.pdf Ik kan de 2 pdfs die Sluis noemde niet vinden..zoui het gedelete zijn door HIsko?

    Bij 2 is er vanzelf invloed op door de locaties van de gevalideerde waarnemingen,
    die worden dan in feite gebruikt als een extra stukje data. Is ook veel gedetailleerder, bij
    voorbeeld planten die alleen langs de kust voorkomen, waarbij een vergelijkbare soort alleen in
    het binnenland te vinden is. Dat red je niet met nafilteren, dan moeten veel te kleine gebieden
    worden ingesteld. En bij 2 zou ook fenologie automatisch meegenomen kunnen worden, analoog aan hoe d
    e locatie mee wordt genomen. Ik kan de tweede link die ik eerder stuurde van harte aanraden, daar wo

    rdt het beter toegelicht dan ik hier in een kort bericht kan: https://arxiv.org/pdf/2203.03253v1.pdf.


  • Participate in the annual iNaturalist challenges: Our collaborators Grant Van Horn and Oisin Mac Aodha continue to run machine learning challenges with iNaturalist data as part of the annual Computer Vision and Pattern Recognition conference. By participating you can help us all learn new techniques for improving these models.


  • Start building your own model with the iNaturalist data now: If you can’t wait for the next CVPR conference, thanks to the Amazon Open Data Program you can start downloading iNaturalist data to train your own models now. Please share with us what you’ve learned by contributing to iNaturalist on Github.


  • Donate to iNaturalist: For the rest of us, you can help by donating! Your donations help offset the substantial staff and infrastructure costs associated with training, evaluating, and deploying model updates. Thank you for your support!
  • 由使用者 ahospers ahospers2020年05月04日 23:44 所貼文 | 2 評論 | 留下評論